Caucus Markup Language

Version 3.1
Reference Guide

Screen Porch LLC.

4031 University Drive, Suite 200
Fairfax, VA 22030-3409
http://screenporch.com

Revision Date: 18 February 1997

FB00024390

COPYRIGHT

The software program “Caucus” mentioned in this guide is copyright © 1996 by Screen Porch LLC, and all rights are
reserved by Screen Porch Inc. The distribution and sale of this product are intended for the use of the original purchaser
only and for use only on the computer system specified. Copying, duplicating, selling, or otherwise distributing this
product, except for the limited purpose of system backup, is a violation of the law.

This Caucus Markup Language Rference Guide is copyright © 1996 by Screen Porch LLC, and all rights are reserved.
The term “copied” extends to all forms of duplication, including, but not limited to, photocopying, ink duplication,
reduction to electronic media or machine readable form, or translation to any other language.

Willful violation of the Copyright Law of the United States can result in civil damages of up to $50,000 in addition to
actual damages, plus criminal penalties of up to one year imprisonment and/or $10,000 fine.

TRADEMARKS

Caucus is a trademark of Screen Porch LLC.
Unix is a trademark of Unix Systems Laboratories.

FB00024391

O 0 N N L AW~

A DA DA DA DA DS D D W W W W W W W W W WD N0NDNDNDNDNDNDNDN = e e e e e e e e
NN kR WY = O 0 0NN R WD = O 0NN DRV O OO W N —= O

1. INTRODUCTION

This document is the reference guide for CML, the Caucus Markup Language. CML is a "mark up"
language that combines HTML tags with simple programming constructs and database functions. The
CML language interpreter is the core of the World Wide Web interface to the Caucus conferencing
system (hence the name).

This guide assumes considerable familiarity with HTML, the World Wide Web, Web browsers, and
the Caucus conferencing system. For more information about Caucus, see the Screen Porch home
page at http://screenporch.com.

This document is copyright ©1996 by Screen Porch LLC. It may not be distributed or reprinted
without permission from Screen Porch. This is a work-in-progress, and will be frequently revised.
This edition corresponds to the CML interpreter provided with the "Caucus 3.1.1" package. The
author may be contacted at roth@screenporch.com.

1.1 What's New in version 3.1

Since this document is being revised constantly, this section briefly describes new features added to
CML, indexed by date.

8 August 1996

$replace() 4.8 replace characters in string
$readfile() 4.4 read contents of any file

$inc() 4.2 "include" directive arguments

$if() 4.6 triadic operator

$t2amp() 417 escape &'s in HTML text

$form() 4.2 extended to support multi-part forms
$peo_names() 4.13 find people by name

$per_lastin() 4.11 time last in a conf

$it howmuch() 4.14 how much of an item seen by a user?
$lower() 4.8 convert to lower case

$upper1() 4.8 upper case 1st letter of each word

1 November 1996

$my text() 4.12 when is my text considered new?
$set my text() 4.12 set the above

$ad author() 4.16 prepare a psuedonymous author name
$t2mail() 4.17 filter e-mail into "mailto:" address
$item_var() 4.18 value of item variables

$set item var() 4.18 set value of item variables

$per_real() 4.11 "real name" of a userid

$cml_dir() 4.3 CML directory of current URL

-1-

FB00024392

O 0 0 N L AW~

—_— e = e e
AN RN = O

17
18
19
20
21
22
23
24

$open()
$readln()
$writeln()
$close()
$output()
$copy2lib()
$safehtml()
$find_it()
$find_filter()
$page _save()
$page_get()
$page_return()
$page caller()
elif directive

14 February 1997

$wrap2html()
$str_index()
$str_revdex()
$str_sub()
$escquote()
$wraptext()
$less()

4.4
4.4
4.4
4.4
4.4
4.4
4.17
4.19
4.19
4.20
4.20
4.20
4.20
54

4.17
4.8
4.8
4.8
4.17
4.17

open a file

read a line from an open file
write text to an open file

close an open file

redirect HTML output

copy file to file library
"reduced HTML" filter

search list of items

display "hits" from searches
save info to regenerate this page
get saved page information
prepare to return to saved page
who "called" a saved page?
extend if and else directives

better handling of “wordwrapped” text
string searching

reverse string searching

substring manipulation

escape double-quote marks

word wraps arbitrary text

“less than” comparison

FB00024393

O 0 90N L W=

[N NS TN NG T NG T N T NG I NG I N I NG I N i S S Sy S T e T e T e T
O 0 1 O U A W= O O K 3O LN WD —= O

2. PURPOSE OF CML

The Caucus conferencing system was first released in 1986 as a text-based, command driven
conferencing (groupware) package. Over the next 8 years, Caucus versions 1 and 2 were extended in
a variety of ways that made it extremely customizable -- but still fundamentally text-based.

With the enormous growth of the World Wide Web in 1994-95, it became clear that a Web-based
interface for Caucus could greatly increase its ease of use, and its popularity. At the same time, the
Web lacked any significant discussion or conferencing tools, and it was clear that a Web interface for
Caucus could fill this gap.

Version 3.0 of Caucus was developed from the ground up as web-based client-server system. It was
designed to serve Caucus conference information to an HTTPD server, which in turn feeds HTML to
any Web browser. But the Caucus server (called "swebd") needs to know what data to serve, and how
(what format) to serve it in. This is the purpose of CML.

CML pages (files) are analogous to HTML pages. They contain Caucus directives (e.g., "display the
text of such-and-such response) in an HTML-like format. They may also contain embedded HTML.

When a Web user wants to access (or add to) a Caucus conference, s/he points the browser at a special
"entry" HTML page. This entry page points to a CML page. (The actual implementation of
"pointing to a CML page" is done via the Web CGI standard.) CML pages point to other CML pages,
exactly analogous to the way HTML pages point to other HTML pages.

When an HTTPD server gets a request for a CML page, it passes the request on (via CGI) to the
Caucus swebd server. Caucus interprets the contents of the CML page, producing a dynamic HTML
page, and passes it in turn on to the HTTPD server, which sends it to the browser.

FB00024394

O 0 90N L W=

[N NS T N T NG T NG T NS T N I N S S S T T e T T e T S
NN R WD = O O NN RN = O

LM b bbb, >DOWOLWLWLWLWWLWWWWWINDN
— OOV XA NE WD, OOVRXIANNDE WD — OO

3. WHAT'SIN A CML PAGE

Each CML page (or file) describes a page that will appear on the user's Web browser. (In some cases
it just produces an HTTP "Location" directive which points in turn to another CML or HTML file.)
CML can be thought of as a superset of HTML. More precisely, HTML is embedded in CML scripts;
swebd does not actually understand or parse the HTML codes. A CML page contain 4 kinds of text:

1. Comments. In the Unix tradition, all lines beginning with "#" are comments and are ignored.
Entirely blank lines are also ignored.

2. HTML code. All lines beginning with a double quote (") are parsed for CML functions, but
are otherwise passed on to the browser unchanged. (The quote is removed.) There may be
leading blanks before the quote; they are ignored.

3. CML functions. Strings of the form $xyz(), $xyz(value), or $(value) are parsed by swebd, and
replaced by the appropriate Caucus values.

4. CML directives. Directives are like C program code: they describe actions to be taken.
Directives start with one of the keywords "if", "elif", "else", "for", "count", "while", "set",

nn

"include", "return", "break", or "end".

A single logical line in a CML file may be broken across several physical lines; a "\" as the last
character means "continued on next (physical) line". Most of the time this is not needed, since HTML
mostly ignores line boundaries. However, the "\" is useful for assembling long lines that will appear
inside HTML <PRE> code, or to improve readability of the CML code.

Here's a sample CML page, typical of a page a Web Caucus user would see early on:

#
#-—-—-CENTER.CML. "Caucus Center" Page.
#

i Overview of (and initial entry to) conferences.

if Sempty ($(href))
include $cml dir()/startup.i center.cml
end

set nch $unique ()

set nxt $page save (1 center.cml \
Sarg(2)+Sarg(3)+Sarg(4)+Sarg(5)+Sarg(6)+sarg(7)+Sarg(8) \
S(center name))

set last conf x

#-—--HTML declaration, header, and BODY tag.
"Content-type: text/html

”

"<HTML>

"<HEAD>

"<TITLE>S (center name)</TITLE>

FB00024395

O 01O N kWi —

"</HEAD>
"<BODY $ (body bg) >

#—--Caucus header.
include $(dir)/header.i

#-—--Tell the user what this page is about.
"<p>
"<TABLE WIDTH=100% CELLSPACING=0 CELLPADDING=0>
"<TR>
"<TD>Caucus Center</TD>
"<TD ALIGN=right>
include $(dir)/youare.i
"</TD>
"</TABLE>

"<p>

"From here, you may go to specific conferences, or

"
"see a list of all conferences on this host.
"<p>

#-——-Prepare to actually put up various kinds of links to the
conferences. Create some variables with lists of

conference names. BApply Scl list() to the entire list

of conferences.

L CONFS are the "popular" conferences.

M CONFS are from the user's personal conference list
set 1 confs $file($(inc)/1 confs.i)

set m confs Suser var(Suserid() my confs)

set ignore $cl list ($(1 confs) $(m confs))

#-—--The various ways of getting to the conferences all appear

as numbered entries, within one large table.

To avoild unpleasant spacing, and because the "JOIN" choice requires

being in a <FORM>, the entire table must be inside a <FORM>.

"<FORM METHOD=POST ACTION="S$ (href)/centerf.cml?$ (nch)+$ (nxt)" NAME="joiner">

"<TABLE CELLSPACING=0 CELLPADDING=0 >

#-——-Personal conference list access:
set way in 1
include $(dir)/cen pers.i $(way in)

#-—--"Popular" conference access:
if $sizeof ($(1 _confs))

include $(dir)/cen pop.i way in
end

#-—--Type a conference name directly:
set way in $plus ($(way in) 1)
include $(dir)/cen type.i $(way in)

FB00024396

O 01O N kWi —

#-——-See a list of all conferences:
#set way in S$plus ($(way_in) 1)
#include $(dir)/cen all.i $(way_ in)

"</TABLE>
"</FORM>
"<P>

#---Advertisement:
include $(dir)/cen adv.i

"</BODY>
"</HTML>

FB00024397

O 0 90N L W=

[USTN NS TN NG TR NG T NG TN NG T NG T NG T NG T NG N NG R S T e T T e T T
S O 0 N N R W= O O KON R WD —=O

4. CML FUNCTIONS
CML contains a large number of functions. These functions have several purposes:

Extract data (from the Caucus conference database) for display.

Manipulate or compare data (such as addition, subtraction, testing equality, etc.)
Put new data back into the Caucus database.

Maintain "state" information between CML pages.

.

All of the CML functions are described below. They have been broken up into related categories, for
ease of reference. There is an alphabetical index of functions at the end.

The syntax of a function must always be "$name(arguments)". There must be no spaces between "$"
and "name". Spaces may be used freely around the "(" and ")". Anything (including spaces or other
functions) may be in the arguments. Some functions have no arguments.

If you wish to display a "$" in your HTML text, and not have it be confused with a CML function,
escape it with a preceeding "\", i.e. "\$".

4.1 CML variables

The simplest CML function is "evaluate this variable". It looks like this:

$(name)

This means "evaluate the variable name, and place its value here". For more information about

nn

variables, see the CML directives "for", "count”, and "set" in section 5.

FB00024398

0 31 O\ N B W —

O

——
—_ O

—_—
AW N

—— —
N O\ D

A A D S DB DSBS D DS WL WL W WLWW WW W DNDNDNDNDNDDNDNDDRNDN /= —
R NN N R WD~ O O IR WD RO O ®WIONWNBRWND =, OO ®

4.2 CML state functions

The CML state functions are the glue that ties a group of CML pages and a Sweb server together. To
understand more about why they exist, see the design document "The Web Caucus". For the CML
author, it is only necessary to understand where they must be used.

$host()
Evaluates to the host name (and http port number) of the current host. This is a useful way
to build HTML links that require the current host name, and still keep your CML code

portable. Example:
"some text

$pid()
Evaluates to the pid (process id) and security code for the swebd server that is dedicated to

your browser. You must include this in links to CML pages. Example:
"
" name

$arg(n)
Evaluates to the N'th argument to this CML page. In the previous example, clicking on link
"name" will bring up the CML page test.cml. In test.cml, $arg(1) will then evaluate to "15",
and $arg(2) will evaluate to "bye".

$inc(n)

Evaluates to the N'th argument to this "include" file (see section 5).

$form(name)
When a CML page is the "recipient” of an HTML form (as in <FORM ACTION="...">), the
form data is available through the CML $form function. The function evaluates to the data
entered by the user in field name (as in NAME="name" in an <INPUT> or <TEXTAREA>
HTML tag), or (in the case of TYPE="submit" fields) to the VALUE string for the button
with NAME=name. If there are multiple values for the field name (as in a <SELECT
MULTIPLE> field), the values are concatenated together, separated by single spaces.

The $form() function transparently handles both standard
("application/x-www-form-urlencoded") and "multipart/form-data" forms. $form() may be
used only with METHOD= POST forms.

Multipart forms may be used with some browsers to upload an entire file, with an HTML tag
of the form <INPUT TYPE="file" NAME="name">. In this case, $form(rname) evaluates to
the name of a temporary file on the server host. (The uploaded data has been placed in that
file). The temporary file will be automatically deleted when the swebd process exits (i.e.,
when the user's session is over). The original name of the file is also available as
$form(name.upload)

$debug(n)
N =1 turns on debugging, which writes data to a logging file in /tmp. N = 0 turns off
debugging. The default is 0.

-8-

FB00024399

AW N~

$caucus_id()
Evaluates to the name of the caucus userid, i.e. the userid that owns the Caucus files.

FB00024400

O 0 3 N L AW =

oA DB b DWW W W W W W W W W NN NDNDNDNDNDN = = == = == =
B LW D =, O O 0 JNNBE WD =, OO IR WD~ O OISV R WD~ O

4.3 Brower and server information and control

$userid()
Userid of the current user.

$cml_dir()
Evaluates to the directory name of the current CML file. For example, if the URL is
http://screenporch.com/spi/swebsock/0008404/0083664/SP31/center.cml?1+x+x
then $cml_dir() will evaluate to "SP31".

$http user agent()
Contents of the CGI environment variable HTTP_ USER_AGENT. Usually a multi-word
string that describes the browser client program.

$goodbye()
Tells the swebd server dedicated to this user to change its timeout period to one minute.
This is a graceful way to exit Caucus, and lowers system load. It is not required, the swebd
server will eventually timeout by itself.

$unique()
Return a unique number each time. Useful for tagging distinct instances of a particular page.

$version()
Returns version number of Caucus server software (e.g., "3.1.04").

$is_passwd()
Evaluates to 'l' if a password changer program was defined in the configuration file
swebd.conf, and '0' otherwise.

$reval(string)
Recursively evaluates string for CML functions. If string contains a CML function, which
when evaluated expands to a CML function, reval() makes sure that string is continually
interpreted until no CML functions remain.

Without reval(), CML text is scanned only once for CML functions.

$protect(string)
Prevents certain CML functions from taking effect. Any CML functions in sfring operate in
a "protected" mode. This is useful, for example, in evaluating CML code that may have
been placed (by a user) in the text of an HTML response.
Functions which have no effect when evaluated inside $protect() include: shell(), silent(),

passwd(), set wrap(), any set co...(), any set it...(), any set my..(), any ad ...(), any
chg ...(), set_user var(), and set_conf var().

-10 -

FB00024401

O 0 N N L W~

[N T N T N T N T N T N T S T e S S
DN A WD~ O VWK JI Un hWNN R~ O

4.4 File Access

$file(name)
Include the entire text of file name at this point.

The $file() function should only be used to include relatively short (a couple of lines,
maximum) files, such as when you need to include the contents of a file in the middle of an
HTML or SET string that you are building. Name is relative to the CML_Path directory
specified in the swebd.conf file. (See the Caucus installation guide for details.)

If you need to include a large file, or one that contains CML directives, see the "include"
directive in section 5.

$readfile(name)
Evaluate to the entire contents of text file name. Name should be the full pathname of a file
on the server host. Whereas $file() is meant as a way to include additional CML code in a
page, $readfile() is meant for reading data that will somehow be processed or displayed by a
CML page.

$write(name text)
Write text to file with absolute pathname name. Overwrites previous contents of name, if
any.

-11-

FB00024402

O 0 0 N L AW~

S A bR bR DWW W W W W W W WWER NN NDNDNDNDNDN = = = === = = = =
DN B WD = O O I B LW~ O VIV B WD~ OO IV B WD~ O

$append(name text)
Append text to file with absolute pathname name.

$dosfile(name)
Truncates name to the first 8 characters, and replaces all dots (".") with underscores (" _").
Useful when name refers to a file on the client machine.

$copy2lib(file libname)

Copies file (a full pathname) to a new file called /ibname, in the Caucus file library. (See
the parameters Caucus Lib and HTTP_Lib in the swebd configuration file swebd.conf for
more information about the Caucus file library.) Libname may contain sub-directory names,
and is always treated as relative to the root of the Caucus file library. Sub-directories are
created automatically. Thus a /ibname of "demo/xyz" would copy file to a file called "xyz"
in a sub-directory "demo" under the Caucus file library, and would automatically create the
"demo" directory if needed.

The function evaluates to the full URL of the newly created file, thus making it possible to
make the file immediately available on the Web in any subsequently produced HTML.

$open(name perm)
Open a file name for reading (if perm is "r"), for writing (if perm is "w"), or to append to (if
perm is "a"). Evaluates to a number which is the file "handle", or to "0" if the file could not
be opened.

$readin(handle var)
Read a line from the file open on handle, and put the text into variable var. Evalutes to "1"
if successful, or to "0" on end-of-file.

$writeln(handle text)
Writes text to the file open on handle. Evaluates to "1" on success, or "0" if handle does not
refer to an open file.

$close(handle)
Close file open on handle.

$output(name mask)
Normally, CML lines that begin with a double-quote (") are interpreted and sent directly to
the user's browser. The S$output() function redirects this text, and writes it to a file name,
instead. Mask is the numeric Unix file permission mask, e.g. a value of "644" means
read/write owner, read group, and read world.

The redirection takes effect on all quoted lines that follow the use of $output(). Another call

to $output(), with no arguments, returns subsequent output from quoted lines to the browser,
in effect "closing" the file.

-12 -

FB00024403

OO0 1 O L B W~

—
N = O

—_——
N W

A A D B D B W W W WWWWWWWEREDNPNNDDRNDNDNDNDNDN /= = == =
DN H WD = O 0 0 N W — O 00 32N i W — O O 0 3 »n

4.5 Shell access

CML provides two functions for accessing the Unix shell (and thereby running commands or scripts
from the shell). Both functions run a command or script with the effective userid of the httpd server.

$shell(command)

Runs command in a shell. The function evaluates to the output from command. Example:
"It is now: S$shell (date)

$silent(command)
Runs command in a shell. The output is ignored. The function evaluates to nothing, i.e. it

effectively disappears. The example logs a user's userid to a temporary file.
" $silent(echo S$userid() >>/tmp/log)

4.6 Comparisons and logical functions

$and(ab ...)
Evaluates to the logical "and" of @ and b and ... May have any number of arguments.

$or(ab...)
Evaluates to the logical "or" of @ and b and ... May have any number of arguments.

$not(a)
Evaluates to the logical negation of a.

$equal(x y)
If x and y are identical (they may be numbers or strings), evaluates to "1". Otherwise it is
HO"'

$not_equal(x y)
Reverse of $equal().

$empty(str)
Evaluates to "1" if st is completely empty, and "0" otherwise.

$not_empty(str)
Evalutates to "1" if st is not empty, and "0" if it is completely empty.

$if(abc)
If a is true, evaluates to b. Otherwise, evaluates to ¢. The classic triadic "if then else"
operator.

-13-

FB00024404

O 0 3 N L AW =

A DA DA DA DA DS D D W W W W W W W W W WD DMNNDNDNDNDNDDNDNDNDN = o e e e e e e e
NN R W= O 0 0N R WD = O 0NN RV = O 0O IO R WD = O

4.7 Mathematics

$plus(a b)
Evaluates to the sum of numbers a and 5.

$plusmod(a b x)
Evaluates to sum of @ and b, modulo x.

$minus(a b)
Evaluates to the difference, a - b.

$mult(a b)
Evaluates to the product of @ and b.

$divide(a b)
Evaluates to the integer quotient of a / b.

$greater(a b)
Evaluates to "1" if a is greater than 5. Otherwise "0".

$gt_equal(a b)
Evaluates to "1" if a is greater than or equal to 5. Otherwise "0".

$less(a b)
Evaluates to “1” if ¢ is less than . Otherwise “0”.

$between(a x b)
Evaluates to "1" if x is between a and b (a <= x <= b). Otherwise "0". Very useful for

processing the result of server-side image maps.

$max(a b)
Evalutes to the larger of numbers a and b.

$min(a b)
Evaluates to the smaller of numbers a and b.
4.8 String Manipulation

$upper(words)
Converts all the text in words to upper case.

$upper1(words)
Converts the first letter of each word in words to upper case.

$lower(words)
Converts all the text in words to lower case.

- 14 -

FB00024405

O 0 0 N L AW~

S A bR bR DWW W W W W W W WWER NN NDNDNDNDNDN = = = === = = = =
DN B WD = O O I B LW~ O VIV B WD~ OO IV B WD~ O

$newline()
Evaluates to a newline character. Useful inside arguments to functions such as $t2hbr(),
$ad_item(), etc.

$word(n str)
Evaluates to word number 7 of string str. Words are separated by one or more spaces. The
first word is word number 1.

$rest(n str)
Evaluates to the "rest" of the words in a string, i.e. word number » through the end of str,
inclusive.

$tablefind(word str)
Look for word in str. If it is identical to a single word, evaluate to the number of that word
in str. Otherwise '0".

$sizeof(str)
Evaluates to the number of words in string s#r.

$width(str)
Evaluates to the width (equivalent number of single-width characters) of str. Double-wide
kanji have a width of 2.

$pad(num)
Evaluates to num blanks. Generally only useful inside <PRE> text.

$replace(a b ¢)
Each of the strings @ and b must either be single characters, or else the base-ten numeric
representation of a single character. $replace() evaluates to string ¢, but with each instance
of character a replaced by character b.

$str_index(what text)
Find the first occurrence of the (one-word) string what in string text. Evaluates to position
number of what in text. (The first position is 0.) Evaluates to “-1” if not found.

$str_revdex(what text))
Find the last occurrence of the (one-word) string what in text. Evaluates to position number

of what in text. (The first position is 0.) Evaluates to “-1” if not found.

$str_sub(pos len text)
Evaluates to a substring of fext, starting at position pos, len characters long.

-15-

FB00024406

O 0 3 N L AW =

—_
—_ O

—_——
W N

L LW W LW W WD DNDNDNDNDNIDN = — == = =
DN A WD~ O OV 0 IO WUN B WD~ O O 0 O Ut

4.9 Conference List Information

There is a family of functions that provide basic information about conferences. All of these
conferences begin with "$cl ", to indicate that they refer to information about a list of conferences
("cl", as in conference list).

$cl_list(names)
Evaluates to a list of conference numbers. If names is empty (i.e., nothing), $cl list()
evaluates to the list of all conferences on the host. If names contains one or more words,
$cl _list() evaluates to the list of conferences that match any of the words in names.
Example:

for cnum in $cl_list(web x)

$cl_list() becomes the list of all conferences whose names start with "web" or with "x". (The
"for" loop thus sets cnum to each such conference number in turn.)

Note: the list of conference numbers is sorted, not by number, but by the name of each
conference, regardless of the order of the arguments to $cl_list().

$cl_num(name)
Evaluates to the number of the conference whose name matches name. (An abbreviation is a
match). Name must have been in the list of conferences generated by the most recent use of
$cl_list().

$cl_name(num)
Evaluates to the name of conference number num. The name will always be in lower-case.
$cl_list() must be called before $cl_name() can be used.

$cl_access(num)
Evaluates to the user's access level to conference num. 0 means the user is excluded from

the conference, 1 means read-only access, 2 means full "include" access, and 3 means
organizer access.

-16 -

FB00024407

O 0 3 N L AW =

S A bR bR DWW W W W W W W WWER NN NDNDNDNDNDN = = = === = = = =
DN B WD = O O I B LW~ O VIV B WD~ OO IV B WD~ O

4.10 Conference Organizer Information

Another family of functions relates to information about a conference that gets set (or changed) by the
conference organizer. In all of these functions, num is the conference number.

$co_org(num)
Evaluates to the userid of the primary organizer of the conference.

$co_greet(num)
Evaluates to the text of the "greeting" for the conference. In the original (text) Caucus
interface, the greeting was displayed every time a person entered a conference.

$co_intro(num)
Evaluates to the text of the "introduction" for the conference. In the original Caucus, the
introduction was displayed when a person tried to join a conference for the very first time.
The introduction offers more information about the conference, to help a person decide if
they really wish to join the conference.

$co_add(num)
Evaluates to "1" if ordinary users can add an item, or "0" otherwise.

$set_co_add(num add)
If add is non-zero, ordinary users may add new items. Ifadd is "0", they may not.

$co_change(num)
Evalutes to "1" if ordinary users can change their own responses. Otherwise "0".

$set_co_change(num chg)
If chg is non-zero, ordinary users may change their responses. If chgis "0" they may not.

$co_visible(num)
Evaluates to "1" if conference name is visible to non-members in conference lists.
Otherwise "0".

$set_co_visible(num vis)
If vis is non-zero, the conference name is visible. If vis is "0", the conference is invisible to

non-members.

$co_userlist(num)
Evaluates to the text of the conference "userlist".

$set_co_userlist(num list)
Set the text of the conference "userlist" to /ist.

-17-

FB00024408

O 0 3 N L AW =

[NS T N T NG T NG T NG T NG T N0 T N T S e T e T T T S
BN e N NS S =2 = - TN e NV, I N OS I (O R)

4.11 Information about a Person

Another family of functions provides information about a particular person who is registered with

"

Caucus. All of these functions begin with "$per ".

$per_name(id)
Evaluates to the full name of the person with userid id.

$per_intro(id)
Evaluates to the text of the "brief introduction” of userid id.

$per_phone(id)
Evaluates to the telephone number of userid id.

$per_laston(id)
Evaluates to the date and time that userid id was last on (last using) Caucus.

$per_lastin(id cnum)
Evaluates to the date and time that userid id was last in conference cnum.

$per real(id)
Evaluates to the "real name" (as registered in the server host system password file) of user
id. If there is no "real name", it evaluates to the empty string. (Note: this function is only
meaningful when the Web userids are derived from the system password file userids. See
the Caucus Installation Guide for more information.)

-18-

FB00024409

O 0 3 N L AW =

S A bR bR DWW W W W W W W WWER NN NDNDNDNDNDN = = = === = = = =
DN B WD = O O I B LW~ O VIV B WD~ OO IV B WD~ O

4.12 "My" Information

The "$my " and "$set my " functions relate to registration information about the current user.

$my _exist()
Evaluates to "1" if the current user is registered with Caucus, and "0" otherwise.

$my name()
Evaluates to the current user's full name.

$my_phone()
Evaluates to the current user's telephone number.

$my _intro()
Evaluates to the text of the current user's "brief introduction".

$my _laston()
Evaluates to the time and date the current user was "last on" Caucus.

$my_text()

Evaluates to a number which represents when a person's items or responses should appear as

n n

new". 0 means "later" (only after someone else adds a response), 1 means now

(immediately becomes new), and 2 means never (it is immediately treated as "seen").

$set my_text(n)
Sets the value of my_text, as defined above, to n.

$set my name(name)

Sets the current user's full name to name. (Will not change the user's name if name is
empty.) Evaluates to 'l' on success, '0' on failure. (Fails if attempting to create a new user,

and the maximum total number of users for this license has been reached.)

$set_my_phone(number)

Sets the current user's telephone number to number. (May be set to nothing). Evaluates to

nothing.

$set_my_intro(text)

Sets the current user's brief introduction to fext. (May be set to nothing). 7ext may contain

newlines. Evaluates to nothing.

$passwd(id newpw oldpw)

Change the password for user id, to newpw (from oldpw). Evaluates to a success code: 0
means success; 1 means a missing argument; 2 means oldpw is wrong; 7 means the password

changer was not enabled for this web site; 8 means a system configuration error.

-19-

FB00024410

O 0 0 N L AW~

A DA D D D D D W W W W W W W W W Wi N NN NN NN NN o e e e e e e e e
AN AR WD = O O NN DW= O OO INNDE WD = O YW OO R WND— O

$passcheck(id pw)
Evaluates to '1" if id and pw are a valid password pair, and '0' otherwise. If $passcheck()
fails, most CML functions that reference actual Caucus data are disabled. (If $passcheck() is
called again and succeeds, the functions are enabled. Functions are enabled by default.)

4.13 Information about groups of people

$peo_members(cnum)
Evaluates to a list of userids that are members of conference cnum. The userids are sorted by
"last name" of the actual users.

$peo_names(cnum names)
Evaluates to a list of userids of people who match names. A person matches if every word in
names is an initial substring of some part of their name. If cnum is non-zero, matching
people must also be a member of conference cnum.

4.14 Item Information
The "it " and "set it " functions provide or manipulate information about an item, or items, in a
conference, or the user's participation in a conference. Cnum always refers to the conference number.

Inum is a particular item number. Rnum is a particular response number.

$it_ member(cnum)
Evaluates to "1" if the current user is a member of the conference.

$it_join(cnum)
Make the current user a member of the conference. Evaluates to "1" if joining is successful,

and "0" otherwise.

$it_resign(cnum)
Resign (remove) the user from the conference. Evaluates to nothing.

$it_last(cnum)
Evaluates to the number of the last item in a conference, i.e., the number of items.

$it_icount(cnum)
Evaluates to the actual number of (non-deleted) items in a conference.

$it_inew(cnum)
Evaluates to the number of new (and undeleted) items in a conference.

$it_rnew(cnum)
Evaluates to the total number of new responses in a conference.

-20-

FB00024411

O 0 0 N L AW~

A DA D D D D D W W W W W W W W W Wi N NN NN NN NN — e e e e e e e e
AN AR WD = O O NN DW= O OO N DR WD = O VWO WU WD~ O

$it_iforgot(cnum)
Evaluates to the number of forgotten items in a conference.

$it_wnew(cnum)
Evaluates to the number of items that have 1 or more new responses.

$it_iunseen(cnum)
Evaluates to the number of unseen items.

$it_listinew(cnum)
Evaluates to a space-separated list of the new items in a conference. This list appears in
"triplet" form. This means that each item is represented by three numbers: a conference
number, an item number, and the number of the first relevant response. For example, if
conference 17 has two new items, 5 and 6, $it_listinew() would produce the string "17 50 17
6 0". To parse triplet lists, use the functions $word() and $rest().

$it_listrnew(cnum)
Evaluates to a "triplet" list of the new responses in a conference. The response number in a
triplet is the first new response in the relevant item.

$it_listiunseen(cnum)
Evaluates to a "triplet" list of the unseen items in a conference. The response number is
always 0.

$it_exists(cnum inum)
Evaluates to "1" if the item exists, and "0" otherwise.

$it_visib(cnum inum)
Evaluates to "1" if the item is visible to the user, i.e. has not been deleted or "forgotten".
Otherwise "0".

$it_new(cnum inum)
Evaluates to "1" if the item is new to this user, i.e. it has a higher number than the highest
item the user has seen. Otherwise "0".

$it_unseen(cnum inum)
Evalutates to "1" if this item is not new but has not been seen by the user. Otherwise "0".

$it_resps(cnum inum)
Evaluates to the number of responses. If the item does not exist (or was deleted), evaluates
to -1. An item without any responses evaluates to "0".

$it_newr(cnum inum)

Evaluates to the number of the first response on this item that is new to this user. If no
responses are new, evaluates to the number of responses + 1.

-21-

FB00024412

O 0 0 N L AW~

N N — — = = = = = e e
—_ O O 0 NN N kW N~ O

$set it seen(cnum inum rnum)
Marks all responses through rnum as "seen" by this user. To mark an item as "unseen", use
an rnum of -1. To mark an item as "forgotten", use an rnum of -2.

$it_frozen(cnum inum)
Evaluates to "1" if the item is frozen, and "0" otherwise.

$set_it_frozen(cnum inum value)
A value of 1 freezes the item. A value of 0 "thaws" it.

$it howmuch(cnum inum userid)
Evaluates to the number of responses seen by user userid to item inum in conference cnum.
A value of -1 means the item is new to that user; -2 means the user has forgotten that item.

Note: to ease the writing (and reading) of CML pages, all of the $it functions that take two arguments
(such as it_visib(), it_resps(), and it newr()) may be written with no arguments. This means "re-use
the exact same arguments as in a previous instance of one of these functions". Warning: results may
be unpredictable if other $it ...() functions (those with more than two arguments) are called in
between.

-22 -

FB00024413

O 0 3 N L AW =

W W W W W LW W W LW W N NN NN NN DN DN DN = = o e e e = e e
O 0 I N U A W N~ O OV 0 IO N A WD — O VR I N B W~ O

4.15 Response Information

The "re " functions provide information about a particular response. As in the previous section, cnum
refers to a conference number, inum to an item number, and rnum to a response number.

$re_exists(cnum inum rnum)
Evaluates to "1" if the response exists, and "0" if the response does not exist or was deleted.

$re_author(cnum inum rnum)
Evaluates to the full name of the author (at the time the response was written).

$re_owner(cnum inum rnum)
Evaluates to the userid of the author (owner) of the response.

$re_time(cnum inum rnum)
Evaluates to the time and date the response was written.

$re_text(cnum inum rnum)
Evaluates to the text of the response.

$re_prop(cnum inum rnum)
Evaluates to the text property number of the response. (The property numbers are, for the
moment, arbitrary, but are being used to distinguish how the user meant a response to be
displayed -- e.g., as literal text with explicit line breaks, as plain text to be reformatted as
simple HTML, or as explicit HTML as written by the responder.)

$re_title(cnum inum rnum)
Evaluates to the title of the response. Only response 0 has a title, which is the title of the
item.

$re_delete(cnum inum rnum)
Deletes specified response. If rnum is 0, deletes entire item. Only the owner of the item or
response (or an organizer) can successfully delete an item or response.
Note: as in section 4.14, all of these functions may be written with no arguments. In that case, the

arguments from the previous use of any of these functions (in the same CML page) that did have
arguments, are re-used.

-23-

FB00024414

O 0 3 N L AW =

A DA DM D D D DS DLW W W W W W W W W WD MNNDNDNDNDNDNDNDNDN = e e e e e e e
NN R W= OV NN R WD =IO O IR WD = O VO NN R WD = O

4.16 Adding Items or Responses

$ad_resp(cnum prop inum text)
Adds text as a response to this item. Assumes the current user is the author. Evaluates to
"1" if the adding succeeded, "0" if it failed. (Adding a response can fail if the user has
read-only permission in the conference, or if the item is frozen.) Records prop as the text
property number.

$ad_item(cnum prop title text)
Adds text as a new item. Title is the title of the new item. Note that there must be a newline
between fitle and text. (See $newline(), section 4.3.) Assumes the current user is the
author. Evaluates to the new item number if the adding succeeded, "0" if it failed. (Adding
an item can fail if the organizer has turned off adding new items.) Records prop as the text
property number.

$ad_author(name)
Sets the author of the next item or response to be added, to the psuedonymn name. This
name will be used in place of the normal author name, in the next (and only the next) call to
$ad_resp() or $ad_item().

$chg_resp(cnum prop inum rnum text)
Replaces the response (cnum, inum, rnum) with text and the new prop property value.

$chg_title(cnum prop inum title)
Changes the title of item (cnum, inum) to title. Prop is required, but ignored.

$set_wrap(width)
When text is added as an item or response, it is automatically column-wrapped before it is
stored in the Caucus data files. Set wrap sets the wrapping position to width single-width
characters. A value of 0 turns column-wrapping off altogether.

4.17 Text Filters

$t2hbr(stuff)
Turns plain text stuff (which may contain newlines) into HTML. It turns each newline into a

. It also turns each of the special characters <, ", and > into their HTML special codes
(unless escaped by a "\"). Example:

" $t2hbr(shell (cat mytext))

displays the text of an ordinary file mytext as HTML.

$safehtml(prop stuff)
"Safe HTML" filter. Filters HTML fragment in text of sfuff, making it "safe" to include in
an existing HTML page. Specifically, it removes the tags <HTML>, </HTML>, <HEAD>,
</HEAD>, <BODY>, and </BODY>. It "closes" any open tags (such as) that don't

-4 -

FB00024415

O 0 0 N L AW~

oA DB b DWW W W W W W W W W NN NDNDNDNDNDN = = == = == =
B LW D =, O O 0 JNNBE WD =, OO IR WD~ O OISV R WD~ O

have a matching closing tag (such as). It looks for mismatched quotes inside a tag, and
adds an extra quote if necessary. (For example, becomes .)

Prop is a number that controls certain properties of $safehtml(). It is the sum of a set of
bitmasks (powers of 2); each bit controls a particular property. The properties are:
1 allow <FORM>s. Otherwise <FORM> tags are removed, like <BODY>.

$rhtml(stuff)
Obsolete form of $safehtml(), without the Prop argument. S$rhtml(stuff) is equivalent to
$safehtml(0 stuff).

$t2html(stuff)
Attempts an "intelligent" filtering of plain text stuff into HTML. Blank lines become <P>'s,
and short lines (except for ends of paragraphs) go inside <PRE> </PRE>. Parses and
translates URL's into anchored links with the same names. (see $t2url().)

$t2url(stuff)
Translates URLs in stuff into anchored links with the same names. Both this function and
$t2html() translate URLs that begin with any of the schemes http:/, gopher:/, telnet:/, ftp:/, or
mailto:.

$wrap2html()
A more intelligent (than $t2html) filtering of plain text into HTML. Acts as much as
possible like a typical word-processor. Each single “hard” RETURN in the original text
translates into a
; multiple RETURNSs become sequences of “ <P>". Groups of
N spaces become N-1 “ ”s plus a regular space. A tab is treated as a group of 5
spaces. Parses and translates URL’s into anchored links.

Special note: All 3 functions also recognize and translate special "caucus" URLs of the form
"http:/caucus...", into a reference to a particular Caucus CML page on the current host (and
with the current swebd subserver). For example, "http:/caucus" becomes a reference to the
Caucus Center page, i.e. center.cml, and "http:/caucus/conf name" becomes a reference to
confhome.cml for conference conf name. This is one of the very few instances in which the
CML interpreter assumes knowledge of the names and arguments of the actual CML files.
(Normally this would be a bad idea, but in this case the feature is so powerful and useful as
to allow the exception.)

$t2amp(stuff)
Translates all "&"s in stuff into "&". Useful to "pre-escape” HTML code that is going
to be "unescaped" when displayed by a browser. (This pre-escaping is essential when using
Caucus to edit a response containing HTML code. Without it, any escaped HTML special
sequences like ">" would lose their meaning after one edit.)

-25-

FB00024416

O 0 0 N L AW~

A DA DA DA DA D D D W W W W W W W W W WD DNNDNDNDNDNDDNDNDNDN = e e e e e e e
NN kR W= O 00 IN R WD = O 0NN RV = O 0O 0 IOWN R WND = O

$escquote(text)
Translates all double-quotes in text to the HTML special sequence “"”. This is
primarily useful for placing text (that contains double-quotes) inside a
double-quote-delimited field inside an HTML <INPUT> tag.

$t2mail(address)
Attempts to translate address into a "mailto:" URL. (For example, if address is
"joe@xyz.com", $t2mail() generates "joe@xyz.com".)
If address does not appear to be an e-mail address, it is passed through unchanged.

$wraptext(width text)

Word-wraps text to width (single-width-character) columns by inserting newlines in the
appropriate places.

4.18 User, Conference, and Item variables

The "regular" CML variables (e.g., "set var xyz" or "$(var)") are ephemeral: once the dedicated swebd
server has exited, the values of those variables are lost.

CML also provides a set of variables that are persistent across sessions, and tied to a particular user,
conference, or item. Such variables may contain any amount of text, including newlines. They
provide a convenient way to extend a Caucus interface, and to customize how the interface appears to a
particular user or in a particular conference or item.

Note that evaluating a variable is a fairly fast process. (All variables for a particular user, conference,
or item, are loaded at once, and cached.) Setting a variable is much slower.

$user_var(user vname)
Evaluates to the value of userid user's variable called vname.

$set _user var(user vname value)
Sets userid user's variable vname to value.

$conf var(cnum vname)
Evaluates to the value of conference cnum's variable called viame.

$set_conf var(cnum vname value)
Sets conference cnum's variable vname to value.

$item_var(cnum inum vname)
Evaluates to the value of conference cnum, item inum's variable called vname.

$set_item_ var(cnum inum vname value)
Sets conference cnum, item inum's variable vname to value.

-26-

FB00024417

4.19 Searching Conference Text

Two very specialized functions provide the capability to search for and display text in the conference
items and responses.

$find_it(cnum inum r0 r1 any inword text)

O 0 3 N L AW =

W W W W W LW W W LW W N NN NN NN DN DN DN = = o e e e = e e
O 0 I N U A W N~ O OV 0 IO N A WD — O VR I N B W~ O

Search conference cnum, item inum, responses 0 through 1. (If 71 is -1, search through the
last response). Look for the word (or words) in fext.

The any and inword arguments modify exactly how and when the search succeeds. If any is
1, the search is successful if any of the words in text are found in a response. If any is 0, the
search succeeds only if all of the words in text are found in the same response. If inword is
1, the words in text match no matter where they are found in the response -- including in the
middle of a word in the response. (For example, "the" will match "other".) If inword is 0,
matches must occur at the beginning of a word. (In that case, "the" will not match "other",
but it will match "thesis".)

Find_it() evaluates to a triplet list of responses that had successful matches. (E.g.,"1725 17
2 8" means that responses 5 and 8 in item 2 in conference 17 had successful matches.)

$search_it(cnum inum 10 r1 any text)

This is an obsolete form of $find it(). It is equivalent to $find it() with an inword of 0.

$find_filter(size words... inword text)

Find_filter is really a text filter. It is meant to be used to display just the "hits" in a response
that contains a word or words searched for via $search it(). It boldfaces the searched-for
words, and displays 3 lines of text around each hit.

Text is typically the entire text of a response. Words contains the word or words that were
searched for. Size is the number of distinct words in words. Inword should have the same
value it did in $find_it() -- it controls whether matches may be found in the middle of a word
(inword = 1), or only at the beginning of a word (inword = 0).

$search_filter(size words... text)

This is an obsolete form of $find_filter(). It is equivalent to $find_filter() with an inword of
0.

-27-

FB00024418

O 0 3 N L AW =

[N T N T N0 T N T N T N T N T N T S T e T = T Sy Sy
N O R W= O 0 0NN AW N = O

W W NN
— O O &0

4.20 CML Page Functions

One of the most challenging tasks in creating sophisticated interfaces in CML 1is keeping track of
where the user has been. For example, a user may start at page A, go to page B to fill out a form,
which in turn is processed by page C... which should return the user to page A. If page B may be
invoked from many different places, this task (remembering where to return to after page C) can get
quite complicated.

This issue is dealt with more fully in the forthcoming "Caucus 3.1 Programmer's Guide". This section
details four CML functions which make this capability possible.

$page save(refresh cmlfile arglist fragment description)
This function "saves" a CML page reference in a table inside the CML interpreter. It
evaluates to (i.e., returns) a slot number in that table, which may be used by the other
$page ... functions to access the saved page. The arguments to $page save() define a page
reference in such a way that the reference can be used later to easily "return to" that page
later.

Cmlfile is the name of the CML file. Arglist is the list of arguments to that file that should
be remembered. (Arglist must be one word, so typically the arguments are specified in their
URL form, i.e. with plus signs separating the individual arguments.) Fragment is the anchor
point where that document should be re-entered, e.g. "#here". (If there is no such anchor
point, fragment should just be "#".) Description is just ordinary text that describes that page;
it may be any number of words, including none.

The "Caucus Center" page shown in the example CML file in section 3 uses $page save() to
save the current location in a table slot:

set nxt $page save (1 center.cml \
$arg(2)+$arg(3)+sarg(4)+sarg(5)+sarg(6)+sarg(7)+sarg(8) \
S(center name))

-28-

FB00024419

O 0 0 N L AW~

[N T N T N0 T N T N T N T N T N T S T e T = T Sy Sy
N O R W= O 0 0NN AW N = O

N DN
O o

AW W W W W W W W W Ww
SO XA RO =SS

This CML code fragment saves the current page (center.cml), with its list of arguments
($arg(2)+...), no fragment ("#"), and a text description (contained inside the variable
center name). The saved page reference is stored in a slot, and the slot number is stored (by
the "set" statement) in variable nxt.

The refresh argument is somewhat complicated. The slot table in the CML interpreter has a
fixed size... which means that slots that haven't been touched in a while will get automatically
recycled. Refresh is a number that refers to the arguments in arglist. 1f refresh has a value
of N, then the N'th argument in arglist is assumed to be a slot number, and that slot is
refreshed -- that is, protected from being recycled until the rest of the slots in the table have
been recycled. See the previously mentioned Programmer's Guide for more information.

$page_get(slot)

Evaluates to the entire string saved in slot (by $page save()). The first word of the result is
the page name, the second word is the argument list, the third word is the fragment (anchor
name, with "#"), and the fourth through last words are the page description.

$page return(slot #override empty)

Evaluates to a string that can be used in an HTTP "Location:" directive to "return to" a page
saved in slot. #override is a fragment anchor that may be used to override the anchor that
was saved (with $page save()). If it is just "#", the original (saved) anchor is used,
otherwise #override is used. Empty should be a full CML page reference, to be used only if
there is no page saved at slot.

Here is an example from the Caucus 3.1 additemf.cml file, which processes adding a new
item to a conference, and then returns to the page which invoked "create a new item":

"Location: $(href)/$page return(Sarg(2) # center.cml?$(nch)+0+x+x+x+x+x+X)

In this case, $arg(2) is the slot number of the page that originally invoked "create a new
item". There is no override on the saved fragment anchor, and the default page (in case there
was no saved "calling" page) is center.cml, the "Caucus Center" page.

$page_caller(which slot)

Evaluates to the slot number of the page which "called" the page saved at slof. Assumes that
the caller of a page is stored in the argument list to that page, in argument number which.

-29-

FB00024420

O 0 3 N L B W=

S A bR bR DWW W W WWWWWWE NN NNEDNDNDNDN = = = = = === =
N B WD = OO AN N WD~ OV I N W — O VoI N & W — O

5. CML DIRECTIVES

CML pages are like mini-programs. They contain directives which control which lines of HTML
code will actually get sent to the browser, or control how many times a set of HTML lines will be

non

evaluated. There are ten directives, plus an "end" directive shared by "for", "count", "while", "if",
"elif", and "else".

5.1 For

The CML "for" loop evaluates a set of lines multiple times. It looks like:

for variablel [variableZ? ...] in 1list
(HTML code or other CML directive code)

end
where variablel, variable2 etc. are names, and /ist is a list of words or values. Typically /ist may be
the result of a CML function. The for loop evaluates the lines between "for" and "end", substituting
the words in /ist as the values of variablel, variable2, etc. (The brackets simply mean that variable?2,
etc. are optional. The brackets would not actually appear in the syntax of the for loop.)
For example, the loop:

for x in abc grs xyz

end

will evaluate the lines between "for" and "end" three times, using each word in /ist. (If there are no
words, the lines will be skipped.) The first time through the loop, x will have as its value "abc".
The second time it will have the value "qrs", and so on.
A different example shows the use of multiple variables:

for one two in alpha beta delta gamma

end

The first time through the loop, one will have the value "alpha" and two will have the value "beta".
The second time, one will have the value "delta", and so on.

The indenting of each line as shown above is not necessary, but it is a good idea. It helps make the
CML code much more readable.

-30-

FB00024421

O 0 31 &N L AW =

oA DS b D W LW W W WWWWWWER DN NDNENNDNILNE = == = = = == =
B LW D =, OO 0NN E WD = O O XX I N A WD~ OOV WD~ O

5.2 Count
The CML "count" loop is similar to the "for" loop. It looks like:

count variable x y
(HTML code or other CML directive code)

end
where variable is a name, and x and y are numeric values or expressions. The count loop will evaluate
the lines between "count" and "end" one time for each integer value between x and y, inclusive. The
first time, variable will have the value x. Then x+1, and so on, up to and including y. Ify is less than
x, the lines will be skipped entirely.
5.3 While

The CML "while" loop is perhaps the simplest loop control directive. It has the form:

while expression
(HTML code or other CML directive code)

end
The "while" loop evaluates expression, and examines the first word of the result. If it is a number, not
equal to 0, all of the lines between "while" and "end" are evaluated. The loop then repeats,
re-evaluating expression, and so on. The "while" loop will continue to execute as long as expression
1s non-zero, so be careful!
54 If

The CML "if" statement evaluates a set of lines if a certain condition is true. It looks like:

if condition
(HTML code or other CML directive code)

end
where condition is some expression. If there is at least one word in condition, and the first word is a

non-zero number, then the enclosed set of lines will be evaluated once. Otherwise they will be
skipped. (Also see the related function $if() in section 4.6.)

-31-

FB00024422

O 0 1 N kW=

A DA DN D D D D D W W W W W W W W W LW NN DN DN DNDDNDNDNDNDN — = e e e e e e e
N AN R W= O 0 0N DR WD RO O ERE WD = O VOV IO N DB W N = O

5.5 Elif

The "if" statement may be extended to handle multiple exclusive cases with the "elif" directive. It
looks like:

if conditionl
(HTML code or other CML directive code)

end
elif conditionZ2

end

The lines between "elif" and "end" are evaluated when the previous "if" conditionl failed (was 0 or did
not exist) and the first word of condition2 is a non-zero number.

Multiple "elif's may be strung together, one after another. Only one of the blocks of CML code
between the if/end and elif/end pairs will be executed.

5.6 Else

There is an (optional) matching "else" to the CML "if" and "elif" statements. It looks like:

if condition
(HTML code or other CML directive code)

end
else

end
The lines between "else" and "end" are evaluated if condition is 0, or does not exist at all. Note: the
"if" must have its own "end"! "Else" may be used with just an "if", or a series of "if"'s and "elifs". If
the latter, it must be the last of the series.

5.7 Set

The "for" and "count" directives define the value of a variable during iterations of the lines between the
"for" or "count", and the matching "end" directive. Outside of those loops, the variable is undefined.

A variable may also be defined across the evaluation of all CML pages, using the "set" directive. It
looks like:

set variable x

-32-

FB00024423

0 3 AN R WD =

A DA DM DM D D D D D W W LW W W LW W WW W NoNDNDNDNDNDN NN — e e e et ek et ek e
0 1O N A WD = O 0O I NI W= O VKW WN A WD =)O WK IO N B W —= O\

where variable is a name, and x is some expression. For the rest of this session, variable has the value
x (unless changed by another "set" directive). Variables defined by "set" are considered "global" in
scope, i.e. the variables are available in all subsequently evaluated CML pages.

5.8 Include
The "include" directive includes the text of a CML file at the current point. It has the syntax:

include filename [argl [arg2 ...]]

where filename is the name of a file, or a set of CML functions that evaluate to the name of a file.
Filename is relative to the CML_Path directory specified in the swebd.conf file. (See the Caucus
installation guide for details.) The brackets indicate that arguments argl, arg2, and so on are optional
(they are not actually part of the syntax). If the arguments are present, they are available inside the
included file via the $inc(n) function (see section 4.2).

Include directives are evaluated according to the current context. For example:

count x 1 3
include file.$ (x)
end

would include the contents of the files file.1, file.2, and file.3.

5.9 Return

The "return" directive immediately ceases processing of the current CML file. It is particularly useful
in CML pages that need to handle special case or "error" conditions. For example:

if some "error" condition
"Location: http://www.xyz.com/errorpage.html

"

return
end

#---OK, go on with the main case here...
"Content-type: text/html

"etc...

5.10 Break

"non

The "break" directive immediately exits the innermost "for", "count”, or "while" loop, and continues
execution of the CML script after the closing "end" of that loop.

-33-

FB00024424

—_
OO 0 3O\t W

1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

Index to CML Functions

$ad_author set psuedonymn for response, 24
$ad item Add an item, 24

$ad resp Add a response, 24

$and logical 'and', 13

$append append text to a file, 12

$arg argument to CML page, 8

$between a <=x <=b?, 14

$caucus_id Caucus userid, 9

$chg resp Change text of response, 24
$chg_title Change title of item, 24
$cl_access user's access level to conference, 16
$cl list get list of conference numbers, 16
$cl_name get name of a conference, 16
$cl_num get number of a conference name, 16
$close close open file, 12

$cml_dir CML directory in URL, 10
$co_add can users add new items?, 17
$co_change can users change their responses?, 17
$co_greet conference greeting text, 17
$co_intro conference introduction text, 17
$co_org userid of organizer, 17

$co_userlist conference 'userlist', 17
$co_visible conf. visible to non-members?, 17
$conf var value of a conference variable, 26
$copy2lib copy file to file library, 12

$debug debugging switch, 8

$divide integer quotient of two numbers, 14
$dosfile truncate to 8 char filename, 12
$empty is string empty?, 13

$equal test equality of two strings, 13
$escquote escape double-quotes, 26

$file include contents of file 'name’, 11
$find_filter Display results of search, 27
$find_it Search items for text, 27

$form HTML forms data, 8

$goodbye make server exit in one minute, 10
$greater A > B?, 14

$gt equal A >=B?, 14

$host host name, 8

$http user agent browser name, 10

$inc argument to include file, 8

$is passwd Is there a password changer?, 10
$it_exists does item exist?, 21

$it_frozen is item frozen?, 22

$it_howmuch how much seen by a user?, 22
$it_icount actual number of items, 20
$it_iforgot number of forgotten items, 21
$it_inew # of new items in conference, 20
$it_iunseen number of unseen items, 21
$it_join make user member of conf., 20
$it_last last item in conference, 20
$it_listinew list of new items in conference, 21
$it_listiunseen list of unseen items, 21

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

-34-

$it_listrnew list of new responses in conf., 21
$it_ member user member of conference?, 20
$it_new Is item new?, 21

$it_newr First new response to item, 21
$it_resign remove user from conf., 20
$it_resps Number of responses to item, 21
$it_rnew total # of new responses in conf., 20
$it_unseen Is item unseen?, 21

$it_visib Is item visible to current user?, 21
$it wnew # of items with new responses, 21
$item_var value of an item variable, 26

$less A <B?, 14

$lower convert to lower case, 14

$max maximum of A and B, 14

$min minimum of A and B, 14

$minus subtract two numbers, 14

$mult product of two numbers, 14

$my exist does this user exist?, 19

$my intro brief introduction of current user, 19
$my laston date user last on caucus, 19

$my name name of current user, 19

$my phone telephone of current user, 19
$my text when does my text appear new?, 19
$newline produce 'newline' character, 15
$not logical 'not', 13

$not_empty is string non-empty?, 13
$not_equal test equality of two strings, 13
$open open a file, 12

$or logical 'or', 13

$output redirect HTML output, 12

$pad provide blank padding, 15

$page caller get caller of a page, 29

$page get value of saved page reference, 29
$page return return to a saved page, 29
$page save save page reference, 28
$passcheck Check id and password, 20
$passwd change user's password, 19
$peo_members list of members of conference, 20
$peo_names find people by name, 20
$per_intro person's brief introduction, 18
$per_lastin time last in a conf, 18
$per_laston date/time person last on caucus, 18
$per _name person's name, 18

$per_phone person's telephone, 18

$per real real name of userid, 18

$pid swebd process id, 8

$plus add two numbers, 14

$plusmod a + b modulo x, 14

$protect Allow only safe CML functions, 10
$re_author Author of response, 23

$re delete delete item or response, 23

$re exists Does response exist?, 23
$re_owner Owner of response, 23

FB00024425

Ju—
SO0 WnN B W=

[, 30 NS T N T NG T NG T NG TN N5 TR N T gy gy Sy S S g S g R WU Y
NAUND W= OOV IN WA WN—

$re_prop Property number of response, 23
$re_text Text of response, 23

$re_time Date/time response written, 23

$re_title Title of item, 23

$readfile read contents of file, 11

$readln read line from file, 12

$replace replace all A's with B's, 15

$rest remaining words in a string, 15

$reval() Recursive CML evaluation, 10

$rhtml see $safehtml, 25

$safehtml Text -> safe HTML, 24

$search_filter Display results of search, 27
$search _it Search items for text, 27

$set _co_add control users adding new items, 17
$set_co_change allow changing responses, 17
$set_co_userlist set text of conference 'userlist’, 17
$set _co visible control conference name visibility, 17
$set_conf var set value of conference variable, 26
$set it frozen freeze or thaw item, 22
$set it seen Mark responses seen, 22

$set item var set value of an item variable, 26
$set my intro set user's brief introduction, 19
$set my name set current user's name, 19
$set my phone set current user's telephone, 19
$set my text set when text appears new, 19

$set user var set value of a user variable, 26

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

-35-

$set_wrap control paragraph wrapping, 24
$shell run shell command, 13

$silent run shell command quietly, 13
$sizeof number of words in a string, 15
$str_index find string in other string, 15
$str revdex reverse find string, 15
$str_sub extract a substring, 15

$t2amp escape &'s, 25

$t2hbr Text -> lines with
's, 24
$t2html Text -> formatted HTML, 25
$t2mail translate to e-mail URL, 26
$t2url Text -> URL's with 'hot' links, 25
$tablefind find a word in a string, 15
$unique return a unique number, 10
Supper convert to upper case, 14
Supperl uppercase 1st letter, 14

$user var value of a user variable, 26
$userid user's userid, 10

$version software version number, 10
$width number of characters, 15

$word N'th word of a string, 15
$wrap2html wordwrap text -> HTML, 25
$wraptext wordwrap text, 26

$write write text to a file, 11

$writeln write text to file, 12

FB00024426

